A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations I: spatial discretization
2016年12月21日 09:32 点击:[]
论文名称: A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations I: spatial discretization
作者: He Yinnian
来源出版物: Journal of Computational Mathematics
年卷期页: 2004,22(1):21-32
收录类型: SCI和EI
论文简介: In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a H-1-optimal velocity approximation and a L-2-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small, nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, one linear Stokes problem on the fine mesh with mesh size h much less than H. The algorithm we study produces an approximate solution with the optimal, asymptotic in h, accuracy
原文链接: A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations I: spatial discretization
上一条:A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations II: time discretization
下一条:A mathematical model and numerical simulation of pressure wave in horizontal gas-liquid bubbly flow
【关闭】