Navier-Stokes方程的最佳有限元非线性Galerkin算法
2016年12月20日 19:42 点击:[]
论文名称: Navier-Stokes方程的最佳有限元非线性Galerkin算法
作者: 何银年、李开泰
来源出版物: 计算数学
年卷期页: 1999,21(1):29-38
收录类型: 其他
论文简介: An optimum finite element nonlinear Galerkin algorithm is presented for the two-dimensional nonstationary Navier-Stokes equations. The standard finite element Galerkin algorithm consists in solving a nonlinear equation on the fine grid finite element space Xh. The optimum finite element nonlinear Galerkin algorithm consists in solving a nonlinear subproblem on a coarse grid finite element space XH(H>h) and solving a linear sub-problem on a fine grid incremental finite element space Wh=(I-RH)Xh. If H is chosen such that H=o(h1/2), then two algorithms are of the convergence rate of same order. However, since H>>h, dimXH<<dimXh, the optimum finite element nonlinear Galerkin algorithm can save a large amount of computational time. Finally, we give the numerical test which shows the correctness of theoretical analysis.
原文链接: Navier-Stokes方程的最佳有限元非线性Galerkin算法
上一条:New multiobjective simulated annealing algorithm and its application to turbine cascade design
下一条:Navier-Stokes方程的最佳非线性谱Galerkin算法
【关闭】